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A General Approach to Network Analyzer Calibration
Kimmo J. Silvonen

Abstract—A new general-purpose algorithm for network ana-
lyzer and test fixture calibration is presented. The TCX algo-
rithm is able to handle most of the existing calibration methods
including symmetrical test fixtures. Any combination of one-

port or two-port standards can be used. There is a possibility

of partial self-calibration, if one of the standards is a two-port

network or a through connection. The algorithm is applied to

get simple equations covering the TSD, LDX (LRL), LAX, and
LMX methods (X being an unknown one-port or symmetrical

two-port network). A transmission path is allowed between the
ports of standard X. In the TSD method the delay line can be

replaced with an attenuation network or with a matched load;
also the “through” line can have an unknown delay and atten-
uation. A new method of root choice for LRL and similar meth-

ods in conjunction with test fixtures is described. The method
of least-squares-fit can be applied, when redundant data are

available. It gives an essential improvement of accuracy in the

simulation of a symmetrical test fixture.

I. INTRODUCTION

D IFFERENT calibration methods have advantages

compared with each other, if accuracy in various fre-

quency bands and availability of standards are consid-

ered. For example:

In the TSD (through-short-delay, line-short-delay)
method [1] the lengths of both lines are allowed to be

unknown, but the reflection standard has to be exactly

known. The difference of the line lengths must not be near

a multiple of 1800.

In the LRL (line-reflect-line) method [2] an unknown

reflection standard can be used, but one of the line lengths

has to be known or zero (TRL [3]). As in the previous

method, several lines are needed in wideband applica-

tions.

The LMR (line-match-reflect) and the LAR (line-atten-

uation-reflect) methods [4], [5] do not have a bandwidth

limitation caused by the line lengths, but matched loads

or matched attenuators are sometimes difficult to con-

struct. The reflection standard does not have to be known.

Also the LSO (line-short-open) method [6] uses only
one line length, but two different reflection standards are

not always easily available. The line length should not be

near a multiple of 90°. A zero-length line is not allowed.

There is a need of a general-purpose formulation ca-

pable of handling nearly all the known calibration meth-
ods with a single set of equations. Several attempts have
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been made in the existing literature to find a “unified”

or a “generalized” formulation for network analyzer cal-

ibration. However, they all seem to be more or less re-

stricted. In [7], [8] the possibility of self-calibration has

not been accounted for. In [9], [10] not all possible com-

binations of calibration standards have been studied. The

approach of [11] is iterative. The best general-purpose

method published thus far is the one of Eul and Schick

[4], [5]. Yet, the use of transmission matrices leads to a

situation, in which one-port and two-port standards have

to be handled separately. In this paper a new very general

calibration algorithm for test fixtures and network analyz-

ers is presented. The algorithm has some advantages com-

pared with the others. The new algorithm uses entirely S

parameters, which have non-infinite values for all practi-

cal circuit elements including open and short circuits and

calibration standards with a zero transmission.

At least two calibration standards are needed, if the fix-

ture is symmetric. Normally the procedure relies on three

or more standards. There is no upper limit for the number

of standards. One of the standards should be a known two-

port or a through connection. The second standard can

either be a known two-port or a known reflective or non-
reflective termination. One of the S parameters of the sec-

ond standard is allowed to be unknown. With a nonre-

ciprocal standard S12 and $1 of the second standard can

both be calculated during the calibration (cf. unknown

transmission in the TSD, LRL, and LAR methods). If the

second standard has a zero transmission, no S parameters

of it are allowed to be unknown. The optional third stan-

dard has to be used in conjunction with asymmetrical test

fixtures and network analyzers. It can be used also with

symmetrical test fixtures. If the third standard is un-

known, it has to be symmetric [4]. In such case the S

parameters of the third standard are calculated as a by-

product. Three exactly known one-port standards as in the

short-open-match method [12] can be used as a special

case.

Most of the previously known methods, as e.g., TSD,

LRL, LD [13] -[15], LAR, LMR, LDN, LAN, LMN [5]

and LSO can all be formulated using the same set of equa-

tions. An identification TCX, lead from the standards
(’‘transmission type circuit–any circuit–unknown cir-

cuit”) is proposed for the new formulation. To make the

nomenclature more clear the names of the TSD and LRL

methods could be changed to LDS and LDR respectively

(cf. [5]). As an example the new algorithm can be applied

to the LSO method allowing either the open or the short

to be unknown. Such alternative combinations as line-
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short-network and line-open-network can also be formu-

lated with TCX algorithm, if an exactly known reflection

standard (short or open) is available. This kind of algo-

rithm has not been published before.

With the LRL, LAR, LMR, and similar methods the

problem of root choice is here solved in an alternative

way, better suited for offset shorts and opens than the pre-

viously used method. The phase of the reflect standard

does not have to be approximated anymore, when using

two-tier calibration.

II. TCX FORMULATION

The eight-term error model [16] is used with the no-

menclature of [17]. If necessa~, the error model can be

extended to the twelve term model as explained e.g., in

[18] or [19]. In the following A, B and C are S matrices

of the standards and MA, ilf~, MC respectively the mea-

sured S parameters using these standards (Fig. 1). L and

R are the error network S matrices so that port one of R
is on the right hand side. S parameters MD are the mea-

surements of the device-under-test D. It should be men-

tioned that the equation set (l)-(4) is a combination of the

four equations achieved for one standard with flow graph

analysis or cascade matrices. These equations were orig-

inally published, although in a different form, in [7]. For

known standards A and B:

1 2

.

D

MB

1 1

ERROR lCALIBRATIONf
1

ERROR

NETWORK f STANDARDS : NETWORK

L } AND DUT ! R

1 2

.

a

MD

CALIBRATION

AND DUT

MEASUREMENTS

Fig. 1. Block diagram for the eight term error model.

The easiest way of using the equation set is to exclude

(6) and (7). This allows standard B to have a zero trans-

mission, if such standard is used. For example the LMR

method does not have to be handled separately anymore,

1 A1lZkf~ll –All O A#~12 O -

0 A1zA4~11 –A12 O A2zA4~1z O

0 A1J4~z1 O 0 A21MA22 –A21

O A12i14~z1 O ~ A22M*ZZ –A22

1 B1lM~ll –Bll O B2@~12 O

0 B12M~11 –Blz O BZ2A4B12 O

0 B11MB21 O 0 B21M~22 –B21

,0 B,2M~*, o 1 B22MB22 –B22-
—

Z/,,-

L22

AL

kR1l

kRz2

kAR. .

.

‘M~ll -

kMA12

M~21

kM~22

M~l ,

kMB12
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~MBz4

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

where A means determinant (e. g., AL = L11L22 –
L12L2J. If more than two known standards are used, a

straight forward extension of the equation set (1 )–(8) is

possible.

When A is fully known and one of the S parameters of

standard B is unknown, the unknown parameter can be

obtained from (10), [8], [17]. Should B be nonreciprocal

and B11 and B22 known, (10) and (11) can be used to ob-

tain B,z and Bzl. They are the same equations as (26) and

(27) in [5] written in terms of S parameters (instead of T
parameters).

k – ’21
R21 (9)

(AA + AB – A11B22 – B11A22)M~12M~21

= (AMA + AM~ – M~11M~2z – MB11M~22)AlzBzl

(lo)

as in the formulation of Eul and Schick [4], [5]. In fact

any such combinations of standards as “Known two-port

A, partly known two-port or one-port B, unknown sym-

metrical two-port or one-port C,” are possible with this

formulation.

Equations (l)-(8) can be written in matricial form:

NE’= G+kH (12)

G = [M~ll , 0, M~21, O, MB1l , 0, MB21, O]T (13)

H = [0, M~12, O, MA22, O, MB12, O, MB22]T (14J

E = [Lll, L22, - - - , kAR]T (15)

E = N-’(G + kH). (16)

Because N, G and H are not functions of k, it is clearly

seen that S parameters E vary linearly with k.
Equations (l)-(8) are solved as follows. First the un-

known parameter k on the right hand side is set equal to
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zero and the solution

[xl, Xz, X3, X4, x~, x~]~ = N-l G (17)

is found. Then we continue setting k = 1 (again only on

the right hand side) and find a new solution

[~1, zz, Z3, 24, Z5, 261T = N-l(G + H). (18)

Coefficients yl “ “ ‘ y~ can now be calculated

y,=z~–xz i=l,2, ...6 (19)

to achieve the full solution:

Lll = xl + ylk (20)

L22 = X2 + y2k (21)

AL = XS + y~k (22)

Rll=; xd+yb (23)

Rzz=:x~+y~ (24)

AR=; xb+yb. (25)

If either k is exactly known or symmetrical error net-

works are assumed, the unknowns can be solved from (l)-

(8) [17]. Usually k is calculated using a third measure-

ment Mc. Assuming symmetry, but not necessarily reci-

procity in standard C, we define:

r = c,, = C2Z (26)

T= C21. (27)

From (11) it is seen that

C12 = QCZ1 (28)

(29)

Equations (l)-(4) are repeated for standard C. By apply-

ing results (20)–(25) a set of four new equations for stand-

ard C is found:
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T=uj+ku~ (36)

kT = U4 + kv~. (37)

If the solving of the same set of equations twice is con-

sidered a drawback, an alternative method e.g., using

subdeterminants could be used. Anyhow, the calculation

can be performed in real-time.

Second order equation is found fork, T or Tusing (34)-

(35) and (36)-(37), respectively:

qk2 + (U1 – v2)k – U2 = O (38)

rz – (Ul + uz)r + UIVZ – V1U2 = o (39)

v3k2 + (U3 – v4)k – U4 = O (40)

T2 – (z+ + U4)T+ U3V1 – iv~uq = O. (41)

Only one of the equations (38)-(41) needs to be solved.

In specific cases the root choice may be based on any of

the unknowns: r, T, LI 1, - . . , AR or k. However, if A
and B are both matched standards, T, LI 1 or RI I cannot

be used as a basis of the root. A wrong choice tends to

lead to non-physical values IL221 > 1 and IR22I > 1 in

the test fixture calibration. It is a common practice to

choose the sign based on the phase of I’, which is nor-

mally at least approximately known. With transmission

line, offset short circuit and offset open circuit standards

the phase of r is frequency dependent. Thus, it is not
very suitable for the basis of the root. In the case of two-

tier calibration the best way is to utilize parameter k, With

reasonably symmetrical test fixtures the complex value of

k = 1 + Oj. So the other root, which is in most cases k
= – 1 + Oj, can easily be disregarded. In network ana-

lyzer calibration the ordina~ root choice method may be

better.

If T = O only two of (30)-(33) are used, namely (30)

and (33). The choice of the number of equations can be

controlled automatically by testing S parameters A4C12and

Mczl of the measurement data or with a preliminary

knowledge of the type of standard C. Reflection coeffi-

cient r is allowed to be equal to zero only, if standard B
(or A or both) is reflective. So, for example, line-short-X

For a reciprocal two-port C Q = 1. If standard C is

asymmetric, an extension of equation set ( l)–(8) has to

be used [17].

To obtain the dependent unknowns I’, kI’, T and k T,
parameters ~i and vi are solved in the same way as x, and

yi :

r=u, +kvj (34)

kI’ = U2 + kvz (35)

is a possible method even if X is a delay line, an attenuator

or a matched load.

There is a free parameter a in the formulation of [4]

and a corresponding free “quadrant” in [7]. The inter-

pretation of the free parameter is the “level of non-reci-

procity”, which can be chosen freely. Different values of

CYlead to differently non-reciprocal (L12 # L21, R12 #

R21) error networks. One of the S parameters L12, L21, R12,

R21 can be chosen freely, e.g.:
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L1z=a#O (42)

(43)

(45)

The values of the quantities L,,, Lzz, AL, R],, RZ2 and

AR still remain unchanged. Thus (l)-(8) do not depend

on a.

In the case of three one-port standards or e.g., TMSO

(thru-match-short-open) method an extension of equation

set (1 )–(8) without self-calibration is used. By a proper

choice of equations in TMS, TMSO and some other meth-

ods all the standards do not have to be connected to both

analyzer ports (cf. [20], [17]).

Some combinations of standards are singular, while

some others are too error sensitive to be used in practice,

For example through-short-X and through-open-X (Alz =

AZ, = 1 and BII = BZ2 = +-1) or a combination of any

three matched standards are all singular.

The de-embedding equations based on the eight-term

error model can be written in terms of S parameters. By

applying (1 )–(4) for device-under-test (DUT) D instead

of standard A:

[

L22M~11 – AL O kRzzkf~lz

o LzzM~ll – AL O

Lzz M~21 o kRzzikf~zz – kAR

o L2Zikf~zl o

Since parameters Lti, RV and k are known and M~lj are

measured, the device S parameters D can easily be solved.

For direct equations, see for example [7].

III. APPLICATION TO SOME PRACTICAL METHODS

A. LD, “LA” and ‘ ‘LM” Methods

If A and B are matched (50 Q) transmission line or at-

tenuation network standards, A, 1 = A22 = B11 = B22 =
O. B may also be a matched load. It can be shown by

direct calculation from (l)-(8) that yl = Xz = X3 = XA =

y~ = y~ = O and:

M~,2M~,* – M~11M~12d
xl = L1l =

MAIZ – M~12d
(50)

(51)

AMA – M~11A4~22+ M~12M~21d * _l_y3=y=
M~21 – M~21d Alz

(52)

y4 = Rll =

(54)
M~ll – MB1l 1

X5 = ‘kR22 =
M~12 – M~12d * ~

AMA – M~22M~11 + MA21M~12d ~ _l_
X6 = kAR =

M~12 – M~12d A21

(55)

(56)

where nonzero values of xi and yi are equal to the solution

of the line-delay method assuming k = 1 [17]. In the case

of line-short and line-open standards xi and y, are all of

nonzero value. For a zero-length through A 12= A21 = 1.

Parameter d can be calculated from (10), [17] even if

one of the standards is an attenuation network. A matched

attenuator can be considered a lossy transmission line. The

correct root can be chosen on the basis of the approximate

line lengths or attenuation (if considerable), as in the nor-

mal TSD and LRL methods. Note thatL11 and R, 1become

exactly correct even with only two non-reflective stand-

ards. The other four error parameters have in addition the

factor 1/k or k, which should be exactly known to allow

accurate determination ofS11 and S22 of the device-under-

0

1[1[ 1“.
D,, M~ll – Lll (46)

kR22M~12 Dlz kM&2 (47)
——

o D21 M D21 (48)

kR22M~22 – kAR D22 kM~z2 – kR1, (49)

test. When a measured DUT is de-embedded using (50)-

(56), the results will be kflll, S22/k, S12and S21, as stated

already in [14]. The achieved accuracy is thus dependent

on the actual value of k.

B. LDX, LAX, and LMX Methods

Such solutions as LDR = LRL, LAR, LMR, LDN,

LAN, and LMN are all achieved using the same formulae

as in LD case, but calculating the value of k using the

third standard as described in Section II. It can’ be shown

by a straight forward solution of (30)-(33) that UI = V2

= V3 = U4 = O, provided that All = A22 = B1l = B22 =
O. The other parameters can be found as follows:

vi =
Y2@c11 Y4 – A Mc) + Y3(MC22 – Y4)

(57)
X5(MC22 Y3 – AMCY2 ) + X6(Mf-11 Y2 – Y3 )

X5(MC22X1– AMC) + X6(MC11 – Xl)
U2 = (58)

X5(MC22Y3 – A MCY2 ) + X6(MC11 Y2 – Y3 )

Mc2*(Y3 – XIY2)
U3 = (59)

X5(MC22Y3 – A MCY2) + ~c(Mcl 1yz – Y3 )
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Mc12(xb – x~y4)
V4 = (60)

X5(~c22 JJ3 – A Mcyz ) + X6(&lCl 1Y2 – Y3 )

r = + d~lZJz (62)

T=u3=v4. (63)

C. TSD Solution

A similar solution as in the TSD method [ 1] is achieved

using (50)–(56) and (30)–(33). Both S parameters A12 and

A21 and parameter k are calculated as a by-product. First

d is determined from (10). Then the solutions (50)-(55)

are calculated setting .A21 = A12 = 1. These results Y;,

yj and X4, xi have to be corrected with coefficients k/A12
and 1 / (kA21) respectively to get the correct S parameters.

The coefficients and the error parameters are obtained as

follows:

k _ A&, – x, 1

z– fl’l~~,y; – yj C,l
(64)

1 _ Mc2j – y~ 1—
kA21 – MC22X; – X; C22

(65)

L,* = x{ = .X1 (66)

(67)

AL=y~A
A12

(68)

R,, = y; = y~ (69)

1
R2Z = X4 —

kA21

1
AR=x~—

kAzl “

(70)

(71)

Cl ~and C22 can be any reflective (known) one-ports. Most

often Cl 1 = C22. The advantage of the LDS = TSD so-

lution is that Szl’s of both lines can be calculated from the

measurement data, while the LRL method gives only the

ratio of S21’s of the lines. The reflection standard has to

be exactly known in the TSD method. The solution covers

also the case with an attenuation network or a matched

load as standard B.

D. Application of the Method of Least-Squares

If the calibration equations have redundant data, some

data reduction techniques can improve the accuracy. The

least-squares-fit (LSF) algorithm [15], [21] is frequently

used. Matricial equation ( l)–(8) and its possible exten-

sion to more standards can be written simply:

NE= G+kH=F. (72)

TABLE I

VALUES OF THE SIMILARITY INDEX WITH Two STANDARDS ASSUMING
TOTAL SYMMETRY: M. 103, c5R . 103

Two Known Standards With LSF Without LSF [ 17]

Line, Delay 19, 19 22-27, 22-27

Line, Short 20, 19 31-44, 33-42

LHte, Open 31, 31 44-46, 44-47

If parameter k is to be solved directly from (72) as in [17],

the corresponding terms are first moved from matrix F to

the left hand side. The pre-requisite for this is, however,

at least three known standards. If matrix product N *N is

not singular, the unique solution will be

E = (N*N)-lN*F (73)

where superscript * means the complex conjugate of the

transpose.

With a transmission type standard as A and a one-port

standard as B there are no redundant equations, if total

symmetry is not assumed. So, there is no need for data

reduction. Also with two two-port standards the effect of

the LSF algorithm is minimal. Under the assumption of

total symmetry, however, significant decrease of error is

encountered.

To test the effect of the least squares algorithm, an

APLAC [22] simulation with the same network as in [17]

was performed assuming total symmetry. See details in

[17]. The results of the error networks L and R are shown

in Table I. 1

In the simulation of a symmetrical test fixture with two-

tier calibration, two fixture standards with LSF seem to

give equally accurate results as three standards. Future

work will show, if this is true also in practical measure-

ments.

IV. CONCLUSION

A novel algorithm is presented, that can handle nearly

all the known calibration procedures for network analyz-

ers and test fixtures. When used with two partly known

matched standards in addition to an unknown third stand-

ard, the algorithm leads to rather compact equations. ln

its general form the algorithm is based on two sets of lin-

ear equations. There are no general restrictions on the S

parameters of the standards. If redundant data are avail-

able due to extra calibration standards or assumption of

symmetrical test fixtures, the least-squares-fit algorithm

is recommended.
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