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A General Approach to Network Analyzer Calibration

Kimmo J. Silvonen

Abstract—A new general-purpose algorithm for network ana-
lyzer and test fixture calibration is presented. The TCX algo-
rithm is able to handle most of the existing calibration methods
including symmetrical test fixtures. Any combination of one-
port or two-port standards can be used. There is a possibility
of partial self-calibration, if one of the standards is a two-port
network or a through connection. The algorithm is applied to
get simple equations covering the TSD, LDX (LRL), LAX, and
LMX methods (X being an unknown one-port or symmetrical
two-port network). A transmission path is allowed between the
ports of standard X. In the TSD method the delay line can be
replaced with an attenuation network or with a matched load;
also the ‘‘through’’ line can have an unknown delay and atten-
uation. A new method of root choice for LRL and similar meth-
ods in conjunction with test fixtures is described. The method
of least-squares-fit can be applied, when redundant data are
available. It gives an essential improvement of accuracy in the
simulation of a symmetrical test fixture.

I. INTRODUCTION

IFFERENT calibration methods have advantages

compared with each other, if accuracy in various fre-
quency bands and availability of standards are consid-
ered. For example:

In the TSD (through-short-delay, line-short-delay)
method [1] the lengths of both lines are allowed to be
unknown, but the reflection standard has to be exactly
known. The difference of the line lengths must not be near
a multiple of 180°.

In the LRL (line-reflect-line) method [2] an unknown
reflection standard can be used, but one of the line lengths
has to be known or zero (TRL [3]). As in the previous
method, several lines are needed in wideband applica-
tions.

The LMR (line-match-reflect) and the LAR (line-atten-
nation-reflect) methods [4], [5] do not have a bandwidth
limitation caused by the line lengths, but matched loads
or matched attenuators are sometimes difficult to con-
struct. The reflection standard does not have to be known.

Also the LSO (line-short-open) method [6] uses only
one line length, but two different reflection standards are
not always easily available. The line length should not be
near a multiple of 90°. A zero-length line is not allowed.

There is a need of a general-purpose formulation ca-
pable of handling nearly all the known calibration meth-
ods with a single set of equations. Several attempts have
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been made in the existing literature to find a ‘‘unified”’
or a ‘‘generalized’” formulation for network analyzer cal-
ibration. However, they all seem to be more or less re-
stricted. In [7], [8] the possibility of self-calibration has
not been accounted for. In [9], [10] not all possible com-
binations of calibration standards have been studied. The
approach of [11] is iterative. The best general-purpose
method published thus far is the one of Eul and Schiek
[4], [5]. Yet, the use of transmission matrices leads to a
situation, in which one-port and two-port standards have
to be handled separately. In this paper a new very general
calibration algorithm for test fixtures and network analyz-
ers is presented. The algorithm has some advantages com-
pared with the others. The new algorithm uses entirely §
parameters, which have non-infinite values for all practi-
cal circuit elements including open and short circuits and
calibration standards with a zero transmission.

At least two calibration standards are needed, if the fix-
ture is symmetric. Normally the procedure relies on three
or more standards. There is no upper limit for the number
of standards. One of the standards should be a known two-
port or a through connection. The second standard can
either be a known two-port or a known reflective or non-
reflective termination. One of the S parameters of the sec-
ond standard is allowed to be unknown. With a nonre-
ciprocal standard S, and S, of the second standard can
both be calculated during the calibration (cf. unknown
transmission in the TSD, LRL, and LAR methods). If the
second standard has a zero transmission, no S parameters
of it are allowed to be unknown. The optional third stan-
dard has to be used in conjunction with asymmetrical test
fixtures and network analyzers. It can be used also with
symmetrical test fixtures. If the third standard is un-
known, it has to be symmetric [4]. In such case the §
parameters of the third standard are calculated as a by-
product. Three exactly known one-port standards as in the
short-open-match method [12] can be used as a special
case.

Most of the previously known methods, as e.g., TSD,
LRL, LD [13]-{15], LAR, LMR, LDN, LAN, LMN [5]
and LSO can all be formulated using the same set of equa-
tions. An identification TCX, lead from the standards
(‘‘transmission type circuit—any circuit—unknown cit-
cuit””) is proposed for the new formulation. To make the
nomenclature more clear the names of the TSD and LRL
methods could be changed to LDS and LDR respectively
(cf. [3]). As an example the new algorithm can be applied
to the LSO method allowing either the open or the short
to be unknown. Such alternative combinations as line-
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short-network and line-open-network can also be formu-
lated with TCX algorithm, if an exactly known reflection
standard (short or open) is available. This kind of algo-
rithm has not been published before.

With the LRL, LAR, LMR, and similar methods the
problem of root choice is here solved in an alternative
way, better suited for offset shorts and opens than the pre-
viously used method. The phase of the reflect standard
does not have to be approximated anymore, when using
two-tier calibration.

II. TCX FORMULATION

The eight-term error model [16] is used with the no-
menclature of [17]. If necessary, the error model can be
extended to the twelve term model as explained e.g., in
[18] or [19]. In the following A, B and C are S matrices
of the standards and M,, My, M respectively the mea-
sured § parameters using these standards (Fig. 1). L and
R are the error network S matrices so that port one of R
is on the right hand side. S parameters My are the mea-

surements of the device-under-test D. It should be men- -

tioned that the equation set (1)-(4) is a combination of the
four equations achieved for one standard with flow graph
analysis or cascade matrices. These equations were orig-
inally published, although in a different form, in [7]. For
known standards A and B:

where A means determinant (e.g., AL = Lyl —
Li;L,;). If more than two known standards are used, a
straight forward extension of the equation set (1)-(8) is
possible.

When A is fully known and one of the S parameters of

standard B is unknown, the unknown parameter can be

obtained from (10), [8], [17]. Should B be nonreciprocal
and By, and B,, known, (10) and (11) can be used to ob-
tain B, and B,,. They are the same equations as (26) and
(27) in [5] written in terms of S parameters (instead of T
parameters).

R, | )
(AA + AB — A By, — By 1Ap) My Mpy

= (AMy + AMy — M, Mgy, — Mp; M)A By

(10)
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Fig. 1. Block diagram for the eight term error model.

My Mg A, Byy = Myio Mpy1A;1 B, (1D

The easiest way of using the equation set is to exclude
(6) and (7). This allows standard B to have a zero trans-
mission, if such standard is used. For example the LMR
method does not have to be handled separately anymore,

(1 AuMy —dy 0 AnMy 0] (M ] M
0 ApMy, —Ap 0 ApM,, O L, T kM1, @)
0 AuMp 0 0 AyMyp, —Ay| |L2 M 3
0 ApMg, 0 1 ApMy —Ap| AL | kMg @
1 ByMp, —By 0 ByMp, O kR, - Mp 5)
0 ByMgy; —Bp 0 BpMp, O kRy, kMg, ©)
0 ByMg O O ByMpy —By| |kAR] Mp: (N

| 0 ByMg,, 0 1 BpMpy —By | kM2, | ®)

as in the formulation of Eul and Schiek [4], [5]. In fact
any such combinations of standards as ‘‘Known two-port
A, partly known two-port or one-port B, unknown sym-
metrical two-port or one-port C,”” are possible with this
formulation.
Equations (1)—(8) can be written in matricial form:
NE =G + kH 12)
G = [My, 0, My, 0, Mpyy, O, My, O]T (13)
H =10, My, 0, My, 0, Mpy;,, O, Mszz]T (14)
E=[Ly, Ly, -, kAR]" (15)
E = N"Y(G + kH). (16)
Because N, G and H are not functions of k, it is clearly
seen that S parameters E vary linearly with k.

Equations (1)-(8) are solved as follows. First the un-
known parameter k on the right hand side is set equal to
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zero and the solution
(17)

is found. Then we continue setting £k = 1 (again only on
the right hand side) and find a new solution

T _ ar—1
[x1, X2, x3, X4, X5, X6 = NG

[21, 225 23> 24> Z5: 2617 = N™N(G + H).  (18)
Coeflicients y; * * * y¢ can now be calculated
y=z-x i=12,+-6 (19
to achieve the full solution:
Ly, =x + yk 20)
Ly = x + nk 21
AL = x3 + y:k (22)
R, = %M + Vs (23)
Ry = %xs + s (24)
AR = lxé + Y. 25

k

If either k is exactly known or symmetrical error net-
works are assumed, the unknowns can be solved from (1)-
(8) [17]. Usually k is calculated using a third measure-
ment Mc. Assuming symmetry, but not necessarily reci-
procity in standard C, we define:

I'=¢C, =Gy (26)
T = Cy. @7
From (11) it is seen that
Cp = 06 (28)
0= ZAZIZCIZiU' 29)
412 Mc21421

Equations (1)-(4) are repeated for standard C. By apply-
ing results (20)-(25) a set of four new equations for stand-
ard C is found:

(36)
@37

If the solving of the same set of equations twice is con-
sidered a drawback, an alternative method e.g., using
subdeterminants could be used. Anyhow, the calculation
can be performed in real-time.

Second order equation is found for &, I" or T using (34)-
(35) and (36)—(37), respectively:

T = u; + kv,
kT = u, + kv,

vik? + W, — vk —uy =0 (38)
T? — (u + )T + wv, — vy = 0 (39)
vsk® + (3 — vk —u, =0  (40)
T? — s + v)T + usvy — v3uy = 0. 41

Only one of the equations (38)-(41) needs to be solved.
In specific cases the root choice may be based on any of
the unknowns: I'; T, Ly, - - - , AR or k. However, if A
and B are both matched standards, T, L;; or R;; cannot
be used as a basis of the root. A wrong choice tends to
lead to non-physical values |Ly;| > 1 and |Ry| > 1 in
the test fixture calibration. It is a common practice to
choose the sign based on the phase of I', which is nor-
mally at least approximately known. With transmission
line, offset short circuit and offset open circuit standards
the phase of I' is frequency dependent. Thus, it is not
very suitable for the basis of the root. In the case of two-
tier calibration the best way is to utilize parameter k. With
reasonably symmetrical test fixtures the complex value of
k = 1 + 0j. So the other root, which is in most cases k
= —1 + 0j, can easily be disregarded. In network ana-
lyzer calibration the ordinary root choice method may be
better.

If T = 0 only two of (30)-(33) are used, namely (30)
and (33). The choice of the number of equations can be
controlled automatically by testing S parameters M, and
M, of the measurement data or with a preliminary
knowledge of the type of standard C. Reflection coefli-
cient I' is allowed to be equal to zero only, if standard B
(or A or both) is reflective. So, for example, line-short-X

Mcixy —x3 Meny, — y3 Mepxs Mcizys r Mcy — xp — ky (30)
My xs M ys Menxy = x3)0 (Meny, — y3)@| | AT B kM1 €2y
Mcaxy Mcyyn Meyxs — X6 Mcpys — Ve T | | M (32)
Mceanxs ~ X6 Mcnys — Yo Mcaxa Q Meny,Q kT kMcy, — x4 — ky, (33)

For a reciprocal two-port C @ = 1. If standard C is
asymmetric, an extension of equation set (1)-(8) has to
be used [17].

To obtain the dependent unknowns I, kT", T and k7,
parameters u; and v; are solved in the same way as x, and
Yi:

I = Uy + kv, (34)

kI = uy + kv, (35)

is a possible method even if X is a delay line, an attenuator
or a matched load.

There is a free parameter « in the formulation of [4]
and a corresponding free ‘‘quadrant’ in [7]. The inter-
pretation of the free parameter is the “‘level of non-reci-
procity’’, which can be chosen freely. Different values of
o lead to differently non-reciprocal (L;; # Ly, Ry #
R;y) error networks. One of the S parameters L5, Loy, Ry,
R;; can be chosen freely, e.g.:
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Lo=a#0 42)
LiL,, — AL
Ly ==& 22 (43)
12
_ Ly
R, = . 44)
RiR, — AR
R, = -1 2; ) (45)
21

The values of the quantities L,;, L,,, AL, R;;, Ry, and
AR still remain unchanged. Thus (1)-(8) do not depend
on «.

In the case of three one-port standards or e.g., TMSO
(thru-match-short-open) method an extension of equation
set (1)-(8) without self-calibration is used. By a proper
choice of equations in TMS, TMSO and some other meth-
ods all the standards do not have to be connected to both
analyzer ports (cf. [20], [17]).

Some combinations of standards are singular, while
some others are too error sensitive to be used in practice.
For example through-short-X and through-open-X (4, =
Ay = 1 and By, = By, = +1) or a combination of any
three matched standards are all singular.

The de-embedding equations based on the eight-term
error model can be written in terms of S parameters. By
applying (1)-(4) for device-under-test (DUT) D instead
of standard A:

F_LZZMDII —AL O kR22MD12

0 LyMp, — AL 0

L22MD21 0 kRZZMDZZ - kAR
_0 L_22MD21 0

Since parameters L;, R; and k are known and Mp,; are
measured, the device S parameters D can easily be solved.
For direct equations, see for example [7].

III. APPLICATION TO SOME PRACTICAL METHODS
A. LD, “LA’’ and “‘LM’’ Methods

If A and B are matched (50 Q) transmission line or at-
tenuation network standards, A;; = Ay, = By = By, =
0. B may also be a matched load. It can be shown by
direct calculation from (1)-(8) that y; = x, = x3 = x, =
¥s = y¢ = 0 and:

- MAIZMBH — MAIIMBIZd

=L, = 50
i ! My, — Mpppd 0
v, = Ly Mg — Mgy 1 1)
2Tk Mg — Mpyd Ap

y; = AL _ AM, — MyuMpy + MypMpnd | 1
Tk Mg — My d Ap

(52
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_ MA21M822 _ MA22M321d

Y4 = Ry = My — My d (53)
4
My, — Mg, 1

xs = kRy = ————"— % — 54
ST T My — Mpnd " o9

xg = kAR = AM, — My Mgy + MppMppd | 1

My, — Mpind Ay
(35)

_ B, _ By,

d=-—"==-= 56
4, Ay (>6)

where nonzero values of x; and y; are equal to the solution
of the line-delay method assuming & = 1 [17]. In the case
of line-short and line-open standards x; and y, are all of
nonzero value. For a zero-length through A, = 4y, = 1.

Parameter d can be calculated from (10), [17] even if
one of the standards is an attenuation network. A matched
attenuator can be considered a lossy transmission line. The
correct root can be chosen on the basis of the approximate
line lengths or attenuation (if considerable), as in the nor-
mal TSD and LRL methods. Note that L, and R,; become
exactly correct even with only two non-reflective stand-
ards. The other four error parameters have in addition the
factor 1/k or k, which should be exactly known to allow
accurate determination of S;; and S, of the device-under-

0 [ D] Mpy — Ly (46)
kRy Mpy, Dy, _ kMp1, @47
0 D,, Mps, 48)
kRyyMpy — kAR| [ D | kMpj, — kR (49)

test. When a measured DUT is de-embedded using (50)-
(56), the results will be kS,;, Sy /k, Si; and S,;, as stated
already in [14]. The achieved accuracy is thus dependent
on the actual value of k.

B. LDX, LAX, and LMX Methods

Such solutions as LDR = LRL, LAR, LMR, LDN,
LAN, and LMN are all achieved using the same formulae
as in LD case, but calculating the value of k using the
third standard as described in Section II. It can be shown
by a straight forward solution of (30)-(33) that 4, = v,
= v3 = uy = 0, provided that A = Ay; = By = By, =
0. The other parameters can be found as follows:

Yo(Mc11ys — AMe) + y3s(Mcoy = ¥4)

57

U —
1 Xs(Mcny; — AMcey,) + xs(Mci1y2 — y3)
= Xs(Mcoyxy — AM¢) + xs(Meyy — x41) (58)
27 xs(Menys — AMcy,) + xMciys — ¥3)
M —_
Uy = c21(ys — x1%2) (59)

T xXs(Mcypys — AMeyy) + xs(Mcenyy — ¥3)
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Mcia(xg — X5Y4)

Vg4 = (60)
xs(Mcpys — AMcey,) + x(Mcyy: — ¥3)
k=1 |2 61)
vy
T'=+ VU Uy (62)
T = Uy = Uy4. (63)

C. TSD Solution

A similar solution as in the TSD method [1] is achieved
using (50)-(56) and (30)-(33). Both S parameters 4,, and
Ay, and parameter k are calculated as a by-product. First
d is determined from (10). Then the solutions (50)-(55)
are calculated setting A,; = A, = 1. These results y;,
y4 and x4, x} have to be corrected with coefficients k /A,
and 1/(kA,,) respectively to get the correct S parameters.
The coeflicients and the error parameters are obtained as
follows:

k _ MCll_xl 1

= ’ ;- (64)
A Mciy; — y3 Ci
1 - Mczzl"‘ )’4I __1_ (65)
kA, Meyxs ~ x5 Cp
Ly =x1 =x (66)
k
Ly =y} — 67
22 Y2 Ap (67)
AL = yj —k— (68)
Y3 A
Ry =y, =, 69
Ry = x5 Ky (70)
AR = x{ —. 71
Xs Ky, (71)

C;, and C,, can be any reflective (known) one-ports. Most
often C;; = C,,. The advantage of the LDS = TSD so-
lution is that S,;’s of both lines can be calculated from the
measurement data, while the LRI, method gives only the
ratio of S5;’s of the lines. The reflection standard has to
be exactly known in the TSD method. The solution covers
also the case with an attenuation network or a matched
load as standard B.

D. Application of the Method of Least-Squares

If the calibration equations have redundant data, some
data reduction techniques can improve the accuracy. The
least-squares-fit (LSF) algorithm [15], [21] is frequently
used. Matricial equation (1)-(8) and its possible exten-
sion to more standards can be written simply:

NE =G + kH = F. (72)

TABLE I
VALUES OF THE SIMILARITY INDEX WITH TWO STANDARDS ASSUMING
TOTAL SYMMETRY: 6L - 10°, 6R + 10°

Two Known Standards With LSF Without LSF [17]
Line, Delay 19, 19 22-27,22-27
Line, Short 20, 19 31-44, 33-42
Line, Open 31, 31 44-46, 44-47

If parameter & is to be solved directly from (72) as in [17],
the corresponding terms are first moved from matrix F to
the left hand side. The pre-requisite for this is, however,
at least three known standards. If matrix product N*N is
not singular, the unique solution will be

E = (N*N)"IN*F (73)

where superscript * means the complex conjugate of the
transpose.

With a transmission type standard as A and a one-port
standard as B there are no redundant equations, if total
symmetry is not assumed. So, there is no need for data
reduction. Also with two two-port standards the effect of
the LSF algorithm is minimal. Under the assumption of
total symmetry, however, significant decrease of error is
encountered.

To test the effect of the least squares algorithm, an
APLAC [22] simulation with the same network as in [17]
was performed assuming total symmetry. See details in
[17]. The results of the error networks L and R are shown
in Table I.!

In the simulation of a symmetrical test fixture with two-
tier calibration, two fixture standards with LSF seem to
give cqually accurate results as three standards. Future
work will show, if this is true also in practical measure-
ments.

IV. ConcLusioN

A novel algorithm is presented, that can handle nearly
all the known calibration procedures for network analyz-
ers and test fixtures. When used with two partly known
matched standards in addition to an unknown third stand-
ard, the algorithm leads to rather compact equations. In
its general form the algorithm is based on two sets of lin-
ear equations. There are no general restrictions on the S
parameters of the standards. If redundant data are avail-
able due to extra calibration standards or assumption of
symmetrical test fixtures, the least-squares-fit algorithm
is recommended.
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